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Internal mixing in stratified fluids 
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Using experimental measurements, estimates arc made of the efficiency of conversion 
of kinetic energy into potential energy through vertical mixing in a continuously 
stratified fluid. In  the experiments kinetic energy was supplied continuously at a rate 
of e to a fundamental internal wave mode in a rectangularly bounded and initially 
linear stable stratification. Mixing resulted from the instability of this wave and its 
consequent ‘breaking ’. Potential energy was gained by the system a t  rate p through 
the gradual weakening of the stratification. 

The instability is predictable using wave-interaction theory, affording a means 
of estimating the amount of kinetic energy lost (at rate ev) to  laminar viscosity 
without first cascading to the fine scales characteristic of turbulent mixing. 

With account taken of this viscous loss the mixing efficiency p / E M M ,  based upon the 
residual kinetic energy input eM ( =  E-+) was found to be approximately constant, 
and not significantly correlated with the rate a t  which energy was supplied, nor with 
the estimated instantaneous minimum gradient Richardson number. The average 
value for eight separate experimental runs using two different experimental config- 
urations was 0.26 with a sample standard deviation of 006. 

Measured density profiles also afforded an estimate of the effective vertical 
diffusivity Kd of density as a result of mixing. Vertically averaged values of the 
product of K~ and the squared local static buoyancy frequency N ,  Kd N2, were found 
to have an average for seven runs of 024eM, with a standard deviation for the 
coefficient of 0 1 ,  and no significant correlation with energy supply rate. 

These results, the first of their kind to correct for incidental losses, substantiate 
the values previously assumed in estimates of dissipation and vertical diffusion in 
the ocean and the atmosphere, and validate the assumption of similarity between 
buoyancy and mass transfer on which they are based. The efficiency value also agrees 
with the kinematic prediction for localized homogenization in small discrete volumes 
made in the companion paper (McEwan 1983). On the basis of that work it is inferred 
from the present results that  the mixing efficiency is only weakly dependent upon 
Prandtl number provided that this is of order unity or greater. 

1. Introduction 
Internal waves and wavelike instabilities lie a t  the small end of the spectrum of 

scales of motion in the atmosphere and the ocean. Although their energy density is 
low compared with the larger scales, they may be important because they could 
represent the primary conduit of energetic dissipation (Woods 1980), and, as such, 
one major factor defining the vertical diffusive properties of the medium. 

Kinetic energy communicated to internal waves is lost through the occasional 
occurrence of intense finite-amplitude distortion. Such events cause ‘ breaking ’, the 

t Present address: CSIRO Division of Oceanography, P.O. Box 21, Cronulla, N.S.W., Australia. 
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abrupt and irreversible creation of interleaved microstructure, which increases 
gradients to a degree where molecular diffusion will cause a significant macroscopic 
transfer of momentum and fluid properties during the lifetime of the event (McEwan 
1983). The transfer of momentum involves a loss of kinetic energy, while the upward 
net transfer of density in a prevailing stable stratification represents an irreversible 
gain in the potential energy of the fluid mass. Ifp is the rate of acquisition of potential 
energy per unit fluid mass as a result of an energy flux e into internal motions, within 
a stratification characterized by buoyancy frequency N ,  viscosity v and molecular 
diffusivity of density K, ,  and the nature of the motion is definable in terms of 
dynamical scales, most particularly a vertical shear d u / d z ,  then 

p / e  is usually referred to as 'flux Richardson number' R,, by virtue of an analogy 
drawn between buoyancy and momentum transfer in horizontal shearing motion 
(Turner 1973). 

An assumption underpinning much of the theory and most of the experimental 
work on convective dynamics is that  turbulent diffusion on macroscopic scales vastly 
exceeds molecular diffusion. If so, diffusivities might cease to be important and R, 
would then depend only on Richardson number (the last dimensionless number in 
( 1 ) )  or some similar inertial parameter characterizing the overall motion. This is the 
kind of dependence implied in Linden's (1979) collation of stratified-mixing 
experiments, but should be regarded with caution in internally generated mixing, and 
oceanic mixing in particular. Cross-isopycnal mixing in the deep ocean is evidently 
small (Gregg & Briscoe 1979) because turbulent mixing events are disperse, infrequent, 
and limited in volume (Gargett 1976). Therefore while molecular diffusivity may be 
insignificant in the mixing events themselves, the internal dissipation rate E averaged 
over the whole fluid volume may include a large component of laminar viscous 
dissipation which contributes nothing to the vertical mixing. Therefore in defining 
vertical diffusion and potential energy gain the appropriate scaling is the dissipation 
in mixing events, or for practical purposes (since it is virtually impossible to 
discriminate between mixing and non-mixing events on fine scales) the energy flux 
eM into mixing scales. 

Providing the actively mixing volume is always small a t  any moment it seems 
justifiable to  assume that this dissipation is independent of viscous dissipation on 
larger scales, ev, and so the total dissipation is written 

e = e,+eM, (2) 

where eM includes viscous dissipation in mixing scales, which are presumed to be 
smaller than the resolvable scales of the disturbance motion, and a t  least as small 
as the buoyancy subscale (eM/hT3):. 

The significant question now is how does p in ( 1 )  depend on the other variables, 
and in particular does the ratio p / & M  (distinguished from flux Richardson number 
p / e  by the title ' mixing efficiency ' and designated q hereinafter) have properties 
generalizable in terms of these variables I For an answer, the difficulty with existing 
experimental results is that  ev, although unavoidably a large component of e on an 
experimental scale, has not been isolated in the measurements. This is reflected in 
the correlation suggested by Linden (1979), in which R,, necessarily zero when 
stratification is absent (since all eM is expended in turbulent dissipation without 
buoyancy change), rises to a maximum then falls gradually as stability is increased. 
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This must be at  least partly because eM/cv also decreases since mixing is less frequent 
or intense. A further difficulty is that most experiments relate to interfacial mixing 
between homogeneous layers. The mixing is, therefore, spatially variable in character, 
and possibly dependent in an unrealistic fashion on the forcing technique. 

The present experiments were conceived in an attempt to minimize these difficulties. 
Internal waves bounded within a container in a continuous stratification can be well 
described by linear theory and, when forced to saturation, cascade their energy to  
resonantly interacting parasitic modes in an orderly and predictable fashion 
(McEwan, Mander & Smith 1972), leading to intermittent but widespread breaking 
and mixing. This allows cv to be estimated and separated from a measurable input 
power per unit mass c. Periodic measurement of the stratification profile and 
integration of the one-dimensional diffusion equation using these measurements gives 
7 and the profile of equivalent vertical diffusion coefficients ~ ~ ( 2 ) .  

The experiments are described in $2. Section 3 outlines the calculation procedure, 
further details of which are given in the appendix. The results are given in §$4 and 
5 and discussed in $6. This work accompanies a descriptive study of wave-induced 
internal mixing (McEwan 19831, which also includes predictions of mixing efficiency 
based on kinematical models of the mixing process. The results of these two studies 
are consistent and suggest an approximately constant efficiency of about f for internal 
wave-inducing mixing. 

2. Experiments 
Experiments were made using a rectangular plate-glass tank 22.8 cm wide, 30 cm deep 
and 62 cm long, filled to the requisite level by a linearly stratified salt solution. Two 
wave-forcing configurations were used. In  the first, ( a )  (figure 1 a ) ,  a plane paddle was 
suspended by a trunnion frame near one end of the tank to enclose a water volume 
of 50.0 cm length. The paddle pivotled about a midplane horizontal axis, and was 
sealed around its edges against the sides of the glass tank by flaps made of felt. The 
face of the paddle was recessed, and into this recess there fitted an inner paddle which 
cleared the edges of the recess with a gap of between 0.7 and 1.3 mm. The space 
between the back of the inner paddle and the face of the recess was about 3.0 mm, 
and the face of both paddles was coplanar and vertical in the mean position. The inner 
paddle pivoted coaxially with the outer paddle pivots on delicate and frictionless steel 
flexure pivots. When the tank was properly filled, polystyrene sheets were floated on 
the surface to provide a rigid and non-diffusing upper surface. 

Mounted centrally above water level on the face of the outer paddle was a sensitive 
( & 0.25 N) semiconductor force transducer, connecting by cotton threads to a 
yoke on the inner paddle so that it could be used to measure the net moment I(. acting 
on the inner paddle. The outer paddle was connected, via a triangular frame, to a 
variable-stroke scotch yoke driven by an electronically controlled stepping motor. 
The yoke displacement and hence paddle rotation a(t) was measured by an induction- 
type displacement transducer. 

The output of both transducers was fed directly to a pen recorder and to an on-line 
computer programmed to calculate and return via teleprinter the work done per cycle 
of oscillation j pda  on the inner paddle, and to record a running total of this work. 

Because the inner paddle was 1.5 cm narrower than the tank and did not extend 
the full fluid depth, i t  was necessary to correct the work input calculated by this 
integration. Since the correction factor was sensitive to the detailed stratification 
profile, and because of the indeterminable effects of leakage past both paddles, a series 

3-2 
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Force transducer 

and inner paddles 

Inner paddle, close 
fitting to recess in 
outer paddle and 
mounted on flexure 

Glass-walled 

Close-fitting paddle 
on very light bearings 

FIGURE 1 .  Experimental configurations. 

of experiments were made with the second configuration ( b ) .  For this (figure 1 b )  a 
dismountable paddle was made which swung on very light ball bearings about a 
horizontal and accurately central lateral axis. This paddle was carefully made to clear 
the sides of the tank with a gap on each side of one millimetre. A false bottom 10 mm 
deep was fitted and provided with a recess to accommodate the swing of the paddle 
with a clearance of one millimetre. A false top similarly recessed and with a slot for 
an arm on the paddle was also fitted. Both the top and bottom had removable cutouts 
for a salinity probe. 

In  this configuration the force transducer was mounted directly on to the 
scotch-yoke piston, and was linked to an extension yoke on the paddle by tensioned 
threads. 
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In  both configurations the fluid column was sounded between runs by a conductivity 
temperature probe, comprising a thermistor and a four-electrode conductivity 
element, calibrated and checked between soundings in prepared saline solutions. Data 
from downward and upward soundings were logged and used to calculate numerically 
the net centre of gravity of the fluid column, and the resonance conditions for the 
internal wave modes. 

To observe the internal motions, a 30cm schlieren system was used in which 
variations in the vertical refractive index gradient were visualized and photographed 
in grades of colour. 

The experimental procedure was first to set up (by the two-tank method) a salinity 
stratification, ranging in density between 1.004 and 1.05 g/cm3. For a frequency 
appropriate to resonance of the fundamental standing internal wave mode (half a 
wavelength in both horizontal and vertical) the paddle oscillation amplitude was then 
increased in small stages from a small level to that for which wave-interaction 
instability was clearly present. For each stage the steady-state wave amplitude, as 
indicated by neutrally buoyant beads in suspension, together with the paddle moment 
and frequency and amplitude decay rate on cessation of forcing were recorded, 
affording a means of calibrating the paddle moment measurement against wave 
amplitude (and net kinetic energy) and estimating the net viscous-damping coefficient 
of the fundamental mode, including damping due to leakage around the paddle and 
the false top. 

The quiescent water column was sounded again, then the paddle amplitude was 
increased and sustained a t  a level where breaking of the forced wave could be seen 
to occur. Forcing frequency was adjusted to sustain a t  the highest level the energy 
input per cycles of oscillation as computed for each successive cycle and returned to 
the laboratory by teleprinter. 

After several hundred cycles, the forcing was stopped with the paddle in mid- 
position and the wave was allowed to decay. Another sounding was taken; then the 
process was repeated with forcing at successively higher levels. 

3. Calculation procedure 
Since dissipation not associated with mixing represents a large proportion of the 

total energy input in any experiment of laboratory scale, the success of the present 
experiment depended heavily on estimating this dissipation accurately. Accordingly 
the form and amplitude of the wavelike motion from which i t  derived needed accurate 
description. 

The basis of calculation was the evident simplicity and predictability of wave modes 
and cascades in a rectangular bounded system. 

The main component of the dissipation was that due to the forced mode itself, whose 
amplitude was directly measurable. In  planning the experiment it was hoped that 
losses to the higher modes could also be found directly by the measurement of 
amplitude decay after the cessation of forcing but this was not so, and i t  became 
necessary to find these losses by calculation. The procedure used is outlined below. 

3.1. Potential-energy gain 
The net energy gained by the system was determined from the increase in elevation 
of the centre of gravity Sz* of the static fluid column before and after each mixing 
run as determined from density soundings. Results were corrected for the hysteresis 
between upward and downward soundings due to  wake effects on the probe 
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(notwithstanding a sounding speed of 1 mm/s) and possible drift in the calibration 
of absolute density, by imposing mass conservation on the density and centre- 
of-gravity integrations. 

3.2. Dominant waves and their amplitudes 

Above a critical amplitude, the forced-wave mode (a standing wave of half-wavelength 
equal to the boundary dimensions in vertical and horizontal) loses energy by 
resonantly interactive cascade to identifiable higher modes of lower frequencies, 
whose amplitudes can be calculated providing their own rate of dissipation is known. 
This was demonstrated for single cascades by McEwan et al. (1972), and the 
calculation was extended here to double cascades, where the higher modes are 
themselves potentially unstable (see the appendix). 

The dominant cascade modes could be identified with a degree of ambiguity from 
the schlieren photographs and, in some cases, from the modulations of the measured 
paddle moment maxima, but a knowledge of component frequencies and amplitudes 
was still necessary. Resonant triad closure requires that frequencies of the parasites 
added together equal that  ofthe forcing wave ((A 3) in the appendix). Commonly there 
exist many combinations of waves which meet this condition approximately. 

The natural frequency of all the possible low-order wave modes was computed for 
the density profiles measured a t  the beginning and end of each run using (A 2) (in 
the appendix). This enabled the detuning effect on the interaction equations to be 
evaluated for all triads using the theory of McEwan & Plumb (1977). 

For the determination of interaction and damping coefficients the simple linear field 
description for standing internal waves was assumed, i.e. (A 1) 

M n  Kn  
h 1 

$j = A, sin - 2  sin-x sin oj t (3) 

for modesj with modal numbers K and M ,  and frequencies oj for resonant closure 
determined as outlined in the appendix. Interaction and damping coefficients and 
forcing and moment relations were calculations using expressions given by McEwan 
(1971), (A 9) and (A 10). The damping coefficients combine dissipation in both the 
sidewall boundary Stokes layers, for which laminar viscosity alone (v) was assumed 
and dissipation through internal strain alone, which assumed pseudo-viscosity vi 
whose magnitude required determination. 

Using the interaction equations ((A 5), (A 6) et seg.), steady-state amplitudes of all 
the modes for each possible triad combination were computed, with the input forcing 
to the fundamental ( K  = M = 1)  mode as defined by paddle oscillation amplitude. 
The mean fundamental mode amplitude was obtained from measured mean moment 
extrema on the paddle, calibrated over a range of wave amplitudes below those 
necessary for interactive instability against direct measurements of amplitude 
determined by excursions of centrally buoyant particles in the wave field. This made 
unnecessary a less reliable calculation based on the measured static density profile. 

With the internal pseudo-viscosity as a parameter an iterative cycle was performed 
to equate the input net power to the net total dissipation in the fundamental mode 
plus the six lowest cascade modes,? as defined by their respective amplitudes and 

t This number is the practical limit for unambiguity ; the tertiary modes were usually well below 
the critical amplitude level predicted by linear theory using laminar viscosity 
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dissipation coefficients. This is equivalent to making 

9 
FIKI~ A,  = C Rj(vi) 1.1; Aj2(vi), 

U 
(4) 

with terms as defined in the appendix. 
The quantity F I K I ~  A, = E is directly proportional to the total net power input per 

unit mass supplied to the forced mode, and is therefore proportional in a statistically 
steady system to E ,  the net internal dissipation in this and smaller scales. F is a forcing 
function determined by the paddle amplitude and fundamental wave amplitude (q.v. 
(A 5 ) ) .  Since this was not always steady during the course of an experimental run, 
the r.m.s. amplitude ( A , )  of this wave was adopted in (4). Rj(v i )  are the damping 
coefficients of modes j with the internal viscosity vi as a parameter. 

3.3. Energy partition and mixing eficiency 

With the amplitudes calculated as above so that (4) is satisfied, the power dissipated 
against laminar viscosity ( V )  in the boundary layers and the interior was calculated. 
With the same constant of proportionality as in (4), 

9 
I‘ = C Rj(v)  I K I ~ A ~ ( v ~ ) ,  ( 5 )  

where R j ( v )  is the damping coefficient as given by (A 10) for each mode assuming only 
a laminar viscosity, i.e. vi = v. V is thus equivalent to cv in (2).  The quantity 
( E -  V ) / E  then defines an upper limit to the ratio E ~ / E .  

It is important to note the unavoidable assumptions implicit in the above 
operation, namely : 

( a )  that viscous and turbulent (or sub-wavescale) dissipation processes act in- 
dependently upon the wave field ; 

( b )  that the mixing energy descends directly into scales that are Fickian in their 
diffusion characteristics so far as their action in dissipating the wave energy is 
concerned, are isotropic and spatially uniform on average ; 

(c) that irreversible mass transfer occurs on the same scales as those receiving the 
mixing kinetic energy ; 

( d )  none of the energy returns to wave kinetic energy by reverse energy cascade. 
Finally the mixing efficiency was calculated as the ratio of the potential energy 

gained over the observed period during the run from the commencement of breaking 
activity to  termination of forcing, to the total energy input P during that period, 

U 

i.e. 

where Q is the total fluid mass in the wave-forcing region. 
The calculation was repeated for all cascade possibilities compatible with observed 

moment modulations and/or schlieren-mode identification, as mentioned in ( a )  
above. 

3.4. Qradient Richardson number 

As a basis for comparison in defining the degree of destabilization of the wave motion, 
a gradient Richardson number based on the sum of the maximum horizontal shear 
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magnitudes of each of the component waves was also calculated, i.e. 

with terms defined in the appendix. 

3.5. Vertical diffusion 

If the one-dimensional diffusion equation 

at aP = ; ( . d g )  

is adopted, the average vertical diffusivity of density K d ( Z )  can be computed for each 
run from successive soundings as a function of depth. Recorded density-depth 
sequences were first fitted by cubic splines in order that  smooth derivatives dp/az 
could be obtained. Integration of (8) was then advanced from the position z = a where 
ap/& (averaged over the time interval) was zero, whence K d ( a )  = Ap(azp/az2)-'At-', 
where Ap and At are density and time intervals between successive soundings. N 2  was 
computed concomitantly as a function of z to give a distribution of the product Kd N2 
for comparison with 8 and eM. 

3.6. Accuracy 
3.6.1. Potential-energy gain. Probe hysteresis and relocation errors were minimized 
by the imposition of mass conservation on the density and moment integration used 
in calculation of centre of gravity. The accuracy is thus estimated as that defined 
by the resolution of the density measurements ( f amounting to f 6 x lop4 cm 
in centre-of-gravity location. No allowance was made for leakage around the forcing 
paddle in the earlier configuration giving rise to a possible underestimation of several 
per cent in potential energy gained; however, the lack of a consistent negative 
anomaly between configurations ( a )  and ( b )  results suggest that  no serious errors arose 
from this source. 

3.6.2. Kinetic-energy input. Frequent recalibrations ensured that direct measure- 
ments of moment and amplitude were accurate to  a fraction of a per cent, and 
comparison between calculated and observed momenbamplitude relations for non- 
breaking waves (see $5) confirmed that for configuration ( b )  the linear field description 
was adequate to better than 5 yo in defining the motion up to breaking ; the accuracy 
with configuration ( a )  was impaired by unmeasured moment contributions a t  the top 
and bottom of the paddle, and errors may have been as high as f 10 Yo. The expression 
(6) used for the computation of 7 was intended to minimize errors from this source, 
by combining the measured energy inputs and gains with a total input/breaking 
energy fraction E / ( E -  V )  derived using calculated amplitudes. Thus the error is 
roughly the sum of centre-of-gravity errors plus an error arising from the error in 
the residue E -  V which depends in a complicated way on A,. Taking the extremal 
values of all quantities yielded a ratio of about 0.45 between the lowest and highest 
estimates of 7 in most cases, and not less than 0.39. This range is equivalent to a range 
of 0.10 about the mean 7 found from the result, or 1.7 standard deviations. 
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4. Visual observations 
After forcing commenced in each run, no significant mixing occurred before 

substantial interactive instability had developed. Usually the first modes to appear 
in the schlieren visualization, apart from the forced fundamental wave, were high in 
vertical wavenumber ( M  up to 30), and indicative (from their location near to the 
centre of the chamber) of parametric instability (see McEwan & Robinson 1975). 
Breaking first tended to occur in the same location, but spread throughout the 
interior within about 20 cycles of the forced mode. As breaking events and their 
residual fine structure became well distributed, there was a notable reduction in the 
wavenumber of the dominant parasitic modes, the final vertical mode number usually 
being between four and seven. This reflects the increased internal damping caused 
by the breaking, as a consequence of which the critical amplitude for unstable 
energization of the higher modal numbers is raised relative to that for the lower 
modes. The lower modes also become less sensitive to detuning from resonance (g.v. 
(A 7 ) ) .  With the double-chamber configuration (figure 1 b )  the motions on the opposite 
sides of the paddle retained a remarkable similarity in mode structure and even in 
the coincidence of breaking events throughout the duration of the whole experiment. 

Typical schlieren images during breaking are reproduced in figure 2 .  The originals 
were colour transparencies, so some resolution and much interpretative material is 
lost in black and white. The reader is referred to the companion paper (McEwan 1983) 
for colour reproductions of a closely similar visualization and a detailed description 
of the breaking process. 

The initial small scale of the unstable wave modulation is clearly evident in figure 
2 (a )  taken about 2 cycles after breaking was first observed. The inset shows the part 
of the field under observation. The forcing paddle is on the right. Both this figure 
and figure 2 ( b )  are retouched to  emphasize the scaling bar of 20 cm total length, and 
to reveal regions of static instability (dpldz > 0) in white hatching. The lightest colour 
defines zones where the density gradient is close to the static value, and regions of 
strongly enhanced density gradient (1.5 times the static gradient or greater) are 
delineated in white. 

Figure 2 ( b ) ,  taken after breaking has continued for some time a t  a somewhat larger 
forcing amplitude than 2(a) ,  shows that the wavenumber of the modulating disturb- 
ance is lower, and that a substantial part of the volume shows the grainy appearance 
indicative of mixing microstructure. 

From this apparent chaos, three points are worthy of attention. First, the unstable 
regions are comparatively laminar in appearance, and even in a state of saturated 
forcing occupy a small proportion of the total volume. Mixing is subsequent to the 
formation of an unstable region, and not to any appreciable extent simultaneous with 
its presence. Secondly, the gradient of refractive index in the granulated regions, 
averaged along the light path, is weakened but not substantially different from the 
undisturbed static gradient. There is nothing to support the assumption common in 
previous speculations on the mechanics of breaking and mixing that there is an 
annihilation of the density gradient throughout the disturbed region. Thirdly, the 
residual effect of an accumulation of mixing events is a fine vertical modulation of 
the density gradient, with thin regions (in the present case, about 1 mm thick) of 
weakened density gradient bounded by thicker regions of slightly strengthened 
gradient. There was no evidence of strongly intensified gradients indicative of 
‘steppy ’ density microstructure. Together these support the conceptual correctness 
of McEwan’s (1983) kinematic model and indicate that the irreversible mixing in 
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individual breaking events, even though widespread and intense, involves only a 
small proportion of the mixing volume. 

5. Measurements 
The first occurrence of breaking as shown by the paddle-moment measurement was 

an abrupt decrease in primary-moment amplitude, and an increase in resonant 
frequency. Although the procedure was to monitor the phase relation between paddle 
oscillation and moment continuously to maintain resonance, the amplitude tended 
to rise and fall as the intensity of the internal mixing declined following a mixing 
event, parasitic wave modes re-intensified, and breaking recurred. 

Figure 3 shows the development in paddle-moment maximum over the full 
experimental range of forcing amplitudes in one experimental sequence. For the low 
level the steady-state moment has been plotted, while, for the unstable and breaking 
experiments, both the initial maximum attained before the complete development 
of instability and the final mean level with continuous sustained forcing are given. 
The forcing level at which fine modes first made their appearance, R, and the level 
for the first occurrence of significant breaking, B, are indicated. The theoretically 
predicted critical amplitude for the fundamental mode at which interactive instability 
is predicted under the conditions of column 6 (table l ) ,  expressed as a moment 
maximum, is marked ‘1’. The main predictions of interaction theory are borne out. 
I n  particular, the mean moment settles after R to the predicted critical fundamental 
amplitude level, then rises after B as internal dissipation increases. 

Of seven experimental sequences, four were aborted or discarded due to technical 
or calibration problems. Table 1 summarizes the remaining three of the results, 
designated by the letters in the first row. For all runs the average value of N was 
about 1 s-l. 

The forcing function, row 2, defines the gross energy input rate per unit mass during 
the period of sustained wavebreaking, which is expressed as a dissipation rate in row 
5 .  Rows 3 and 4 compare the measured fundamental mode amplitudes with that 
predicted by interaction theory, using the effective internal viscosity vi. The latter 
is always lower, implying that the internal damping is overestimated, and the 
proneness to  tertiary instability is underestimated. The consequences of this are 
discussed later. 

The potential energy gain rate over the period when breaking was observed is given 
in row 6 and the fraction that this represents of the input rate, which defines the 
conventional flux Richardson number, is listed in row 7 .  

The wave modes receiving the first cascade of input energy, row 8, have a bearing 
in determining the effective internal viscosity vi for closure of the energy-balance 

FIQURE 2. Schlieren visualizations during breaking. Inset shows the part of the experimental tank 
in view. The paddle is on the right. These figures are reproduced from colour transparencies and 
are retouched t o  delineate regions of static instability in hatching on white, and regions where the 
local stable gradient of density is 1.5 times the static value by a white boundary. Lightest shades 
are regions of gradient close to the static value. ( a )  Two forcing cycles after breaking has 
commenced. A localized patch of mixed fluid from the first event lies beneath the scaling bar. The 
fine scale of the secondary wave structure is indicative of parametric instability. ( b )  After sustained 
breaking. The secondary wave structure is low in wavenumber and not clearly defined. Fine-scale 
layering density microstructure occupies most of the field, and breaking has occurred most recently 
near the bottom of the picture. 
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FIGURE 3. Paddle moment amplitude versus paddle displacement amplitude. -, linear theory ; 
0, experimental values of equilibrium measured moment. Bars define the range of moment decrease 
following the first occurrence of instability. Level ‘I’ defines the predicted level for primary 
resonantly interactive instability. ‘R’ marks the first observed instability and ‘B’  is the first level 
at which ‘breaking’ and turbulence was evident. 

equation (4) (expressed as proportion of laminar viscosity v in row 10) and in defining 
the minimum gradient Richardson number (7)  for the wave motion, row 15. The latter 
is strongly dependent upon the presence of tertiary modes (row 9) as reflected in the 
high values obtained for configuration ( b ) ,  which was less disposed to instability. 

Mixing-energy dissipation rate (row 11)  determined from E -  V in (4) and ( 5 )  gives 
the net mixing efficiency 7 tabulated in row 12. The vertical diffusion rate found by 
integration of (8) over the period of observed breaking was corrected for molecular 
diffusion occurring during the interval between soundings. The product of diffusivity 
and local buoyancy frequency squared varied with depth. A representative profile 
is shown in figure 4. 

Vertically averaged values are tabulated in row 13 and expressed as a fraction of 
eM in row 14. I n  one run a mechanically caused modulation on the density sounding 
made calculation inaccurate, and this result is deleted. 

Row 16 lists the viscosity function in ( l ) ,  using the vertically averaged value of N2. 

6. Discussion 
6.1. Flux Richardson number and mixing eficiency 

In  this work a distinction is made between Jlux Richardson number R, = p / e  and 
mixing efliciency 7 = p/e,. This is to reflect the possibility that on laboratory scales 
or for very intermittent mixing in the ocean or atmosphere a large component of e 
is laminar viscous dissipation eV, which has no effect on the stratification. 
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For the purpose of calculation it has been necessary here to assume that the finest 
scales on which viscosity acts are those of calculable tertiary instabilities, which in 
reality cannot represent the finest scales on which motion proceeds without turbulent 
mixing. eM, being found as a residual e -  ev, is therefore probably overestimated, but 
by an amount depending in an obscure way upon the nature of the high-order wave 
cascade. 

Table 1 shows that for the present experiments R, was usually small compared with 
7 because the viscous loss component of e was large, even for intense mixing. Much 
of the loss was in wall friction, an inescapable component in any modestly scaled 
laboratory experiment. 

For other laboratory experiments the ' non-mixing ' component of the dissipation 
would be similarly large. I n  figure 5 both R, and 7 are plotted against minimum 
gradient Richardson number Ri, together with the data presented by Linden (1979). 

While the relevance of Ri as a dynamical parameter can be questioned in mixing 
induced as in the present case by short waves and without evidence of horizontal 
shearing instability, there is in common with the other experiments a slight negative 
correlation between R, and Ri, in the range considered. From table 1 the variation 
coefficient is large and R, is significantly correlated with e. Since v and N2 were 
relatively constant there is a concomitant positive correlation with v P / s .  

I n  contrast the estimated average value of 7 was 0-26, comparable with the 
maximum R, for shear induced intense interfacial mixing reported by Thorpe (1973) 
and Koop (1976). The coefficient of variance is about one quarter of that for R, and 
the results yield no significant correlation with either Ri or v P / e  over the widest 
achievable range of forcing conditions. 

These results are consistent with the kinematical description of internal mixing 
given in McEwan (1983), which implies an insensitivity to input energy since mixing 
is seen as a series of widespread but volumetrically small events whose number 
density is determined by the rate of energization but having a similar evolution. 
Indeed the average obtained corresponds well with the value o f t  derivable from that 
description on the assumption of intense and discrete mixing as well as with other 
estimates (e.g. Thompson 1980). 

It also agrees conveniently with the value frequently assumed in mixing calculations 
(e.g. Olbers 1976; Lilley, Wac0 & Adelfang 1974). 

6.2. Vertical diffusivity 

Both dimensional and physical arguments indicate (q.v. Weinstock 1978) that, 
providing final viscous dissipation occurs on scales much smaller than those for 
vertical transport, the vertical diffusivity of buoyancy K d  is defined by a single 
parameter KdN2/€M. The magnitude of this ratio is subject to debate, but the 
assumption of similarity permits a simple estimate in the case of turbulence generated 
by horizontal shear. I n  this case the rate of gain of potential energy through vertical 
turbulence flux of buoyancy is gw'p'lp, where primes here denote turbulent variations 
from the mean, while the rate of working by the mean flow against Reynolds stress 

I n  the present context the former term is equivalent to p and the latter to eM, since 
the viscous ev here concerns losses on scales larger than the mixing structures. 
Therefore since N2 = -gp-'dp/dz and if vertical diffusivity is defined by a mean 
gradient of density, i.e. Kd = =(dp/dz)-l, substitution gives 

is u"au/az .  

Kd = 7€M/N2. (9) 
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FIQURE 4. Vertical diffusivity as a function of depth z below the upper surface. These profiles are 
for the runt in table 1 .  ---, K~ (emz s-l); ---, K~ N 2  (cmz s - ~ ) .  

Attention is drawn to the difference between this and the expression by Lilley et 
al. (1974) and others, which give a proportionality constant on the right-hand side 
of I$/( 1 --Bf), or, overlooking viscous losses on large scales, 7/(  1 - 7).  The expressions 
are in fact equivalent, since eM includes both the work done against gravity and the 
ultimate dissipation against friction on the mixing scales. eM is therefore larger than 
the terminal dissipation rate by the factor (1  -7)-l. Nevertheless (9) seems to be a 
more useful formulation since once mixing scales are reached viscous dissipation is 
inseparable from eM. 

An inspection of rows (12) and (14) of table 1 confirms (9) even better than might 
be expected, since mixing was not primarily shear generated. The average value of 
K d N 2 / e M  is 0.24, equal t o  the average 7 to  well within the limits of experimental 
uncertainty but beyond the value of 0.35 to  be expected if a factor v / (  1 - 7)  were to 

6.3. Prandtl-number dependence 

Although viscosity and Prandtl number (0-01 em2 s-l and 900 respectively) were 
effectively constant in these experiments, some useful indication of their possible 
influence on mixing emerges from the results. 

I n  all experiments N2 was about 1.0 sP. Therefore from row 13 of table 1 the 
effective vertical diffusivity of density K~ was usually much less than the laminar 
viscosity, although considerably greater than the molecular diffusivity of density K,. 

Nevertheless the ‘effective internal viscosity’ vi (row 10) was usually several times 
the laminar viscosity, so that the ‘turbulent Prandtl number’ gT = V i / K d  was 
between 16 and 80 (row 17, table l ) ,  considerably greater than unity. I n  no 
conventional sense therefore could the field be regarded as ‘fully turbulent ’. 

Richardson’s (1920) original argument proposes that the flux Richardson number 
(or more appropriately here the mixing efficiency 7)  should equal the mean gradient 
Richardson number xi divided by the turbulent Prandtl number crT. An extension 
of the argument to the present circumstances might require a dynamical parameter 

apply. 
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I .  

0 0. I 0.2 0.3 0.4 0.5 0.6 
R ,  

FIGURE 5. Flux Richardson number R, ( =  p / e  in the present experiments) and mixing efficiency 
7 ( =  @/eM) versus gradient Richardson number Ri. Open symbols: R,, present experiments; closed 
symbols: v ,  present experiments; crosses and dots: R,  estimate from previous experiments, 
compiled by Linden (1979). 

different from Ri but equivalent in its expression of the ratio of buoyant and kinetic 
energy; any such parameter would be expected to vary inversely with the forcing 
rate. 

However, a comparison of the values in rows 12 and 17 shows that to fit the 
Richardson relation not only would Ri or its equivalent need to be large, but also 
erratic. A more plausible conclusion is  that 7 i s  only weakly dependent on vT. 

This is not too difficult to explain in the light of the detailed kinematic observations 
in McEwan (1983), to which the reader is referred to accompany the following 
discussion. 

Once breaking has occurred and interleaving density microstructure has been 
created, i t  is effectively frozen into the field on scales smaller than O(S), where 
S = (v /N)a,  a t  which scale viscosity inhibits buoyant untangling. Kinetic energy 
transferred to such scales during a mixing event is irreversibly lost to  viscosity or 
into buoyancy redistribution. If the extent of an interleaving structure is 1 the 
untangling time will be O(l /q ' ) ,  where q' is the velocity scale for the relative 
interleaving motion. 

If A is the vertical extent of the mixing event the buoyancy body force per unit 
mass between interleaving fluid layers will not exceed AN2,  and when flattened nearly 
horizontal through gravitation of the mixing region the horizontal component will 

t = O ( V ~ ~ N - ~ S - ~ A - ~ ) .  
For the mixing to be irreversible, significant molecular diffusion of density must 

occur during this timescale; hence t > O ( P / K ~ ) ,  and with rearrangement and 
substitution 

be 0(SAN21-'). Equating this to viscous force O(vq'/S2) gives q' = O(S3AN2v-11-1 1 or 

V 
- = 0- < O ( f k ) .  
KS 

116 is evidently large in observable cases and l / A  is a t  least of order unity. Therefore 
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unless the Prandtl number for buoyancy is similarly large the mixing efficiency is 
likely to be insensitive to that number. 

The same arguments will not hold for Prandtl numbers appreciably less than unity 
for in that case diffusion would be complete before relative motion in the mixing 
region had subsided. Mixing efficiencies might then be greater than those measured 
here. 

6.4. Application to the ocean and the atmosphere 

Internally induced mixing in the oceans is evidently very intermittent, with actively 
turbulent regions usually occupying only a small fraction of the volume a t  any 
particular time. Woods (1980), assuming this intermittency to be 0.05 such that an 
appropriate dissipation Eh in the mixing events is twenty times the average internal 
dissipation, then deduced that the Kolmogorov subscale (V3/q , ) '  would be about 3 mm 
and the buoyancy subscale (f3,/N3)' about 10 cm. This happens to agree with his 
observations of the scale of Kelvin-Helmholtz billowing overturn. 

Lilley et al. (1974) provide data for clear-air turbulence over mountains, clearly 
identified with internally generated stratified mixing. From this a representative 
dissipation rate of 20 cm2 sP3 and N2 of 4.610-4 s - ~  and a kinematic viscosity of 
0.095 om2 s-l yield Kolmogorov and buoyancy subscales of 0.08 and 1420 cm 
respectively. 

In  the present experiments, supposing that within active mixing regions the 
turbulent Prandtl number is order unity, then to  first approximation the intermit- 
tency will be of order the reciprocal of the net turbulent Prandtl number ( T ~ .  

Therefore, scaling the mixing dissipation by a factor crT the Kolmogorov subscale 
(table 1 ,  row 18) is about 0.04 cm and the buoyancy subscale (row 19) ranges between 
0.3 and 1.4 em. The scale separation and the intermittency are both roughly 
comparable to those prevailing in the upper ocean, and the present results should 
be directly applicable. 

In  the atmosphere the scale separation is considerably wider, implying a substantial 
scale cascade beyond breaking before dissipation scales are reached. Together with 
the low Prandtl number in air this would imply a more complete annihilation of 
density contrasts in a single event. The effect on net mixing efficiency is hard to gauge 
because a smaller proportion of the total kinetic energy input is expended before the 
contrasts are destroyed, leaving a larger residual to be lost to viscosity without 
further work against gravity. The present results must therefore be regarded 
cautiously for atmospheric applications. 

These experiments could not have succeeded without the ingenuity and perseve- 
rance of Mr Ian Helmond, whose contribution is gratefully acknowledged. The 
apparatus required precise and painstaking construction and this was done by Mr 
G. Scott and Mr T. Firestone. Mr R.  Bell undertook the diffusion integrations. All 
the work was performed a t  the CSIRO Division of Atmospheric Physics, Aspendale. 

Appendix. Dissipation and energy-partition equations 
A 1 .  Field description 

The field is taken as an ensemble of linear wave modes satisfying tangentiality on 
the rectangular boundaries x = 0 , l ;  z = 0, h of the container, viz 

. Knx Mnz 
@ = X @ j s . c K , M , =  X Aj sinI sin- sin wi t . 

K M  h 
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Owing to imperfections in the linear density profile, the functional dependence on 
z is an approximation, adopted for convenience in formulating and computing energy, 
dissipation and interaction coefficients. It is not, however, acceptable in determining 
the natural frequency of component modes. For this purpose a ray closure integration 
based upon the WKB approximation was adopted. With W(z)  = - (dp/dz) g* /p ,  
where p(z) is the measured static density profile fitted by a fifth- or sixth-order 
polynomial, iterations on g* representing a scaling correction to N were first made 
to satisfy 

for the fundamental mode M = K = 1 using the measured wave frequency w,. I n  
regions where w i  > N 2 ,  N was taken equal to w .  Successive iterations in w were made 
using (A 2) for each mode considered using the derived N ( z )  function. 

A 2 .  Interaction expressions 

Energy can be lost by internal wave mode ‘a’ into parasitic lower frequency modes 
‘ b ’  and ‘ c ’  if the triad resonance conditions 

IwaI - lWbl - IwcI = O, (A 3) 
K , + K b + K ,  = 0 (A 4) 

are approximately satisfied. I n  the present case with fields defined by (A l ) ,  
satisfaction of (A 4) is ensured for approximate modal numbers, but for a given mode 
‘a’ exact resonance is confined to a continuum of interaction pairs which may not 
include any of these, but which lie on a resonant locus L. The situation in wavenumber 
space is shown in figure 6 .  kj and mj are horizontal and vertical wavenumbers 
respectively. 

Provided that pairs b,  c can be found, and each of b ,  c are in turn susceptible to 
destabilization by d,  e and f, g respectively, the interaction equations can be written, 
to lowest order, 

A, = Fa--R,A,+Sb,AbA, primary mode; 

A, = - R, A ,  + S,  A ,  A,  I 
Rs and Ss are net damping and interaction coefficients given by (A 9), (A 10) 
respectively. Limit solutions are found by setting the A s  to zero; modes a,  b and c 
are susceptible to instability if their amplitudes exceed critical values, respectively 



78 A .  D .  McEwan 

0 ki 

FIGURE 6. Detuned interaction in wavenumber space. The resonant locus L for wavemode ' a '  is 
detuned by 6~ from the nearest triad with integer wavenumbers occupying the rectangular 
experimental volume. 

then, if Fa exceeds Ra xa, the terminal amplitude of the parasitic modes is defined; 
for example for A ,  < A ,  < x, 

A ,  = A ,  = A, = A, = 0. 

If the above gives A ,  > x b ,  A ,  < & 

etc. 

A 3.  Detuning 

If several modes sharing triad interaction with the highest-frequency mode j are 
simultaneously present, the system evolves so that ultimately the only ones remaining 
are those that yield the lowest xj (McEwan et al. 1972). This is useful for defining 
which parasitic modes are most likely to appear. However, when the system is 
bounded, there are usually no low-order modes that are precisely resonant, and the 
calculation of the xj must be modified accordingly. 

I n  wavenumber space (figure 6) detuning is represented by the displacement of grid 
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intersections representing internal modes from the resonant locus L. For each triad 
there is a minimum wavenumber difference SK represented to near approximation by 
the shortest path to L. The nearest resonant triad is then represented by the triangle 
OAB' on the figure. 

McEwan & Plumb (1977) showed that detuning increases the critical amplitude 

(A 7) 
X a  by a factor 

$a = [I +(C,-CJ6K12 ( R ~ + R C ) - ~ ] ' ,  

where c b  and C ,  are group velocities of the resonant partners, regarded as equal and 
opposite travelling waves, i.e. 

Of the many possible modes near resonance, the ones selected thus depend critically 
on the amount of detuning, and their own properties. 

A 4. Interaction and damping coeficients 

The expressions used were adapted from McEwan (1 97 1 ). Wavenumbers and 
frequencies were those appropriate to the nearest resonant triads, as defined above 
and denoted by primes: thus the interaction coefficients are 

S b c -  - (2 7 + 7 k;, + 7 K j  (k;,w::-k::w;,)(k::m;,-E;,m;,) ( 1 6 ~ ; ~ i ~ ; ) - ' .  (A 9) 
Ob wc 

S,, and Sac and coefficients for bde and cfg interaction are given by substitution with 
subscripts in cyclic order. 

Damping is assumed to be given by dissipation due to laminar friction in Stokes-type 
wall boundary layers on all sides, plus an internal pseudo-viscous dissipation with 
an adjustable internal viscosity vi. With the motion field approximated by the linear 
inviscid wavefield, the dissipation coefficient is then 

where w is the chamber width and Rej = w j  h2/v  is the Stokes number. 

measured losses due to leakage past the paddle. 
For the fundamental mode only, an additional constant was added to account for 
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